Multiferroic Domain Switching in Canted Antiferromagnetic Conical Spin Chains

T. Honda ${ }^{1,2}$, J. S. White ${ }^{3}$, A. B. Harris ${ }^{4}$, L. C. Chapon ${ }^{5}$, A. Fennell ${ }^{3}$, B. Roessli ${ }^{3}$, O.
Zaharko ${ }^{3}$, Y. Murakami ${ }^{2}$, M. Kenzelmann ${ }^{6}$, and T. Kimura ${ }^{1,7}$
${ }^{1}$ Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
${ }^{2}$ Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
${ }^{3}$ Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
${ }^{4}$ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
${ }^{5}$ Institut Laue-Langevin, BP 156X, F-38042 Grenoble, France
${ }^{6}$ Laboratory for Scientific Developments and Novel Materials (LDM), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland
${ }^{7}$ Department of Advanced Materials Science, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
E-mail: tkimura@edu.k.u-tokyo.ac.jp

Magnetic domain switching induced by magnetic and electric fields was investigated in the olivine $\mathrm{Mn}_{2} \mathrm{GeO}_{4}$ showing both weak ferromagnetism and ferroelectricity, i.e., multiferroicity. The ground-state magnetic structure of this compound can be regarded as canted antiferromagnetic conical spin chains in which incommensurate spiral and canted commensurate spin structure components coexist and magnetically-induced ferroelectric polarization develops in the direction parallel to net magnetization. Unpolarized and polarized neutron scattering measurements after applying magnetic and/or electric fields revealed close correlation between domains ascribed to the commensurate and incommensurate components and the nature of field-induced multiferroic domain switching. The results clarify the mechanism of simultaneous reversal of the magnetization and the ferroelectric polarization in the light of a flop of the cone axis in the conical spin chains.

