S5

Multiferroic Domain Switching in Canted Antiferromagnetic Conical Spin Chains T. Honda^{1,2}, J. S. White³, A. B. Harris⁴, L. C. Chapon⁵, A. Fennell³, B. Roessli³, O. Zaharko³, Y. Murakami², M. Kenzelmann⁶, and T. Kimura^{1,7} ¹ Division of Materials Physics, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan ² Condensed Matter Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan ³ Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland ⁴ Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA ⁵ Institut Laue-Langevin, BP 156X, F-38042 Grenoble, France ⁶ Laboratory for Scientific Developments and Novel Materials (LDM), Paul Scherrer Institut (PSI), CH-5232 Villigen, Switzerland ⁷ Department of Advanced Materials Science, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan E-mail: tkimura@edu.k.u-tokyo.ac.jp

Magnetic domain switching induced by magnetic and electric fields was investigated in the olivine Mn_2GeO_4 showing both weak ferromagnetism and ferroelectricity, i.e., multiferroicity. The ground-state magnetic structure of this compound can be regarded as canted antiferromagnetic conical spin chains in which incommensurate spiral and canted commensurate spin structure components coexist and magnetically-induced ferroelectric polarization develops in the direction parallel to net magnetization. Unpolarized and polarized neutron scattering measurements after applying magnetic and/or electric fields revealed close correlation between domains ascribed to the commensurate and incommensurate components and the nature of field-induced multiferroic domain switching. The results clarify the mechanism of simultaneous reversal of the magnetization and the ferroelectric polarization in the light of a flop of the cone axis in the conical spin chains.