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Recently, the increasing volume of available experimental and quantum- 

computational material data, along with the development of machine-learning 
techniques, has provided a new opportunity to develop methods for accelerating 
discoveries of new materials and physical and chemical phenomena. By using 
machine-learning algorithms, hidden information on materials, including patterns, 
features, chemical rules, and physical laws, can be automatically discovered from both 
first-principles-calculated data and experimental data [1-8]. To render data-driven 
approaches meaningful and useful for materials science studies, it is necessary to design 
material representations with which the physical properties can be predicted with high 
accuracy and the results derived using machine-learning methods can be interpreted in 
the language of physical chemistry. 

Information on the structure of a material is usually described using a set of atoms 
with their coordinates and periodic unit cell vectors, which are required for crystalline 
systems. The material data using this primitive representation can be categorized as 
unstructured data, and the mathematical operations performed on such material data 
involve the algebra of sets only. Therefore, advanced quantitative machine-learning 
algorithms cannot be applied directly and effectively to conventional material data, 
owing to the limitation of the algebraic operations of the primitive data representation. 
In order to apply well-established machine-learning methods, including predictive 
learning and descriptive learning, it is necessary to convert the primitive representation 
into fixed-dimensional vectors or matrices, such that the comparison and calculations 
using the new representation reflect the nature of the materials and the actuating 
mechanisms of the chemical and physical phenomena. In response to this request, 
various methods for encoding materials have been developed in the field of materials 
informatics [9, 10]. 

In this paper, we introduce our effort in designing a material descriptor, with 
emphasis on the interpretability of the derived learning results, that (1) utilizes 
information on the local structure, (2) incorporates the valence atomic configuration, 
and (3) accepts algebraic operations to construct global descriptors from local 
descriptors. We utilize the intuition from the ligand field and crystal field theories, in 
classifying or categorizing local atomic environments by using the number of valence 
orbitals (electrons) coordinating the valence orbital of the center atom, to implement the 
above-mentioned concept of developing a novel representation (Fig 1a). We name this 
type of descriptor the “orbital field matrix (OFM)." 

To verify the applicability of the proposed material representation, we focus on 
magnetic materials based on rare earth – transition metal (RT) alloys and RT alloys 
including a light element X, which may be B, C, N, or O (RTX). We first examine the 



decision trees for predicting the magnetic moments of Mn, Fe, Co, and Ni in RT alloys. 
The decision trees learned from the RT alloy data show that the coordination numbers 
of the occupied d orbitals of the transition metals and the occupied f orbitals of the 
rare-earth metals play important roles in determining the local magnetic moments of the 
transition metal sites. In addition, kernel ridge regression (KRR) analyses using 
standard techniques and similarity measures are implemented in learning prediction 
models to quantitatively predict the local magnetic moments of transition metal sites in 
RT alloys, formation energies for RTX materials, and atomization energies for organic 
molecules. Our computational experiments show that the proposed material 
representation can accurately reproduce the DFT-calculated local magnetic moments of 
transition metal sites in RT alloys, formation energies of crystalline systems, and 
atomization energies of molecular systems (Fig. 1b). 
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Fig. 1 (a) OFM representation for an Na atom in a regular octahedral site 
surrounded by 6 Cl atoms: atomic one-hot vector for Na (middle), representation 
for the 6 Cl atoms surrounding the Na atom (left), and representation for the Na 
atom surrounded by 6 Cl atoms (right). (b) Comparison of formation energies 
calculated using DFT and those predicted through machine learning 
(ML-predicted), using OFM. 
 


